## Naive Lie Theory

Download **Naive Lie Theory** full ebooks in PDF, ePub and Kindle version. Read online free *Naive Lie Theory* release on: 2008-12-15, by John Stillwell in category: __Mathematics__ book.

In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he...

### Overview

pdf | 371 KB | English | Isbn: 038778215X | Author: John Stillwell | Release Date: 2008-12-15

Description

In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).

**Download Now**[Full Version]

**Download Link 1**- Fast Download

**Download Mirror**- Direct Download

### #1 Naive Lie Theory

**Author**: John Stillwell**Publisher**: Springer Science & Business Media**Release Date**: 2008-12-15**Total Pages**: 217**Genre**: Mathematics**Review**: (118)

## Download #1 Naive Lie Theory eBook Pdf ePub and Kindle

In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).

### #2 Mathematics and Its History

**Author**: John Stillwell**Publisher**: Springer Nature**Release Date**: 2020-11-07**Total Pages**: 400**Genre**: Mathematics**Review**: (223)

## Download #2 Mathematics and Its History eBook Pdf ePub and Kindle

This textbook provides a unified and concise exploration of undergraduate mathematics by approaching the subject through its history. Readers will discover the rich tapestry of ideas behind familiar topics from the undergraduate curriculum, such as calculus, algebra, topology, and more. Featuring historical episodes ranging from the Ancient Greeks to Fermat and Descartes, this volume offers a glimpse into the broader context in which these ideas developed, revealing unexpected connections that make this ideal for a senior capstone course. The presentation of previous versions has been refined by omitting the less mainstream topics and inserting new connecting material, allowing instructors to cover the book in a one-semester course. This condensed edition prioritizes succinctness and cohesiveness, and there is a greater emphasis on visual clarity, featuring full color images and high quality 3D models. As in previous editions, a wide array of mathematical topics are covered, from geometry to computation; however, biographical sketches have been omitted. Mathematics and Its History: A Concise Edition is an essential resource for courses or reading programs on the history of mathematics. Knowledge of basic calculus, algebra, geometry, topology, and set theory is assumed. From reviews of previous editions: “Mathematics and Its History is a joy to read. The writing is clear, concise and inviting. The style is very different from a traditional text. I found myself picking it up to read at the expense of my usual late evening thriller or detective novel.... The author has done a wonderful job of tying together the dominant themes of undergraduate mathematics.” Richard J. Wilders, MAA, on the Third Edition "The book...is presented in a lively style without unnecessary detail. It is very stimulating and will be appreciated not only by students. Much attention is paid to problems and to the development of mathematics before the end of the nineteenth century.... This book brings to the non-specialist interested in mathematics many interesting results. It can be recommended for seminars and will be enjoyed by the broad mathematical community." European Mathematical Society, on the Second Edition

### #3 Mathematics and Its History

**Author**: John Stillwell**Publisher**: Springer Science & Business Media**Release Date**: 2013-06-29**Total Pages**: 371**Genre**: Mathematics**Review**: (366)

## Download #3 Mathematics and Its History eBook Pdf ePub and Kindle

A concise, unified view of mathematics together with its historical development. Aiming at mathematicians who have mastered the basic topics but wish to gain a better grasp of mathematics as a whole, the author gives the reasons for the emergence of the main fields of modern mathematics, and explains the connections between them by tracing the course of a few mathematical themes from ancient times down to the 20th century. The emphasis here is on history as a method for unifying and motivating mathematics, rather than as an end in itself, and there is more mathematical detail than in other general histories. However, no historical expertise is assumed, and classical mathematics is rephrased in modern terms where needed. Nevertheless, there are copious references to original sources for readers wishing to explore the classics for themselves. In summary, readers will be able to add to their mathematical knowledge as well as gaining a new perspective on what they already know.

### #4 Roads to Infinity

**Author**: John C. Stillwell**Publisher**: CRC Press**Release Date**: 2010-07-13**Total Pages**: 250**Genre**: Mathematics**Review**: (2)

## Download #4 Roads to Infinity eBook Pdf ePub and Kindle

Winner of a CHOICE Outstanding Academic Title Award for 2011! This book offers an introduction to modern ideas about infinity and their implications for mathematics. It unifies ideas from set theory and mathematical logic, and traces their effects on mainstream mathematical topics of today, such as number theory and combinatorics. The treatment is historical and partly informal, but with due attention to the subtleties of the subject. Ideas are shown to evolve from natural mathematical questions about the nature of infinity and the nature of proof, set against a background of broader questions and developments in mathematics. A particular aim of the book is to acknowledge some important but neglected figures in the history of infinity, such as Post and Gentzen, alongside the recognized giants Cantor and Gödel.

### #5 The Four Pillars of Geometry

**Author**: John Stillwell**Publisher**: Springer Science & Business Media**Release Date**: 2005-12-30**Total Pages**: 229**Genre**: Mathematics**Review**: (297)

## Download #5 The Four Pillars of Geometry eBook Pdf ePub and Kindle

This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises

### #6 Reverse Mathematics

**Author**: John Stillwell**Publisher**: Princeton University Press**Release Date**: 2018-01-01**Total Pages**: 200**Genre**: Mathematics**Review**: (180)

## Download #6 Reverse Mathematics eBook Pdf ePub and Kindle

This book presents reverse mathematics to a general mathematical audience for the first time. Reverse mathematics is a new field that answers some old questions. In the two thousand years that mathematicians have been deriving theorems from axioms, it has often been asked: which axioms are needed to prove a given theorem? Only in the last two hundred years have some of these questions been answered, and only in the last forty years has a systematic approach been developed. In Reverse Mathematics, John Stillwell gives a representative view of this field, emphasizing basic analysis—finding the “right axioms” to prove fundamental theorems—and giving a novel approach to logic. Stillwell introduces reverse mathematics historically, describing the two developments that made reverse mathematics possible, both involving the idea of arithmetization. The first was the nineteenth-century project of arithmetizing analysis, which aimed to define all concepts of analysis in terms of natural numbers and sets of natural numbers. The second was the twentieth-century arithmetization of logic and computation. Thus arithmetic in some sense underlies analysis, logic, and computation. Reverse mathematics exploits this insight by viewing analysis as arithmetic extended by axioms about the existence of infinite sets. Remarkably, only a small number of axioms are needed for reverse mathematics, and, for each basic theorem of analysis, Stillwell finds the “right axiom” to prove it. By using a minimum of mathematical logic in a well-motivated way, Reverse Mathematics will engage advanced undergraduates and all mathematicians interested in the foundations of mathematics.

### #7 Elements of Mathematics

**Author**: John Stillwell**Publisher**: Princeton University Press**Release Date**: 2016-05-31**Total Pages**: 440**Genre**: Mathematics**Review**: (1)

## Download #7 Elements of Mathematics eBook Pdf ePub and Kindle

An exciting look at the world of elementary mathematics Elements of Mathematics takes readers on a fascinating tour that begins in elementary mathematics—but, as John Stillwell shows, this subject is not as elementary or straightforward as one might think. Not all topics that are part of today's elementary mathematics were always considered as such, and great mathematical advances and discoveries had to occur in order for certain subjects to become "elementary." Stillwell examines elementary mathematics from a distinctive twenty-first-century viewpoint and describes not only the beauty and scope of the discipline, but also its limits. From Gaussian integers to propositional logic, Stillwell delves into arithmetic, computation, algebra, geometry, calculus, combinatorics, probability, and logic. He discusses how each area ties into more advanced topics to build mathematics as a whole. Through a rich collection of basic principles, vivid examples, and interesting problems, Stillwell demonstrates that elementary mathematics becomes advanced with the intervention of infinity. Infinity has been observed throughout mathematical history, but the recent development of "reverse mathematics" confirms that infinity is essential for proving well-known theorems, and helps to determine the nature, contours, and borders of elementary mathematics. Elements of Mathematics gives readers, from high school students to professional mathematicians, the highlights of elementary mathematics and glimpses of the parts of math beyond its boundaries.

### #8 Geometry of Surfaces

**Author**: John Stillwell**Publisher**: Springer Science & Business Media**Release Date**: 2012-12-06**Total Pages**: 236**Genre**: Mathematics**Review**: (1)

## Download #8 Geometry of Surfaces eBook Pdf ePub and Kindle

The geometry of surfaces is an ideal starting point for learning geometry, for, among other reasons, the theory of surfaces of constant curvature has maximal connectivity with the rest of mathematics. This text provides the student with the knowledge of a geometry of greater scope than the classical geometry taught today, which is no longer an adequate basis for mathematics or physics, both of which are becoming increasingly geometric. It includes exercises and informal discussions.

### #9 Numbers and Geometry

**Author**: John Stillwell**Publisher**: Springer Science & Business Media**Release Date**: 2012-12-06**Total Pages**: 343**Genre**: Mathematics**Review**: (266)

## Download #9 Numbers and Geometry eBook Pdf ePub and Kindle

A beautiful and relatively elementary account of a part of mathematics where three main fields - algebra, analysis and geometry - meet. The book provides a broad view of these subjects at the level of calculus, without being a calculus book. Its roots are in arithmetic and geometry, the two opposite poles of mathematics, and the source of historic conceptual conflict. The resolution of this conflict, and its role in the development of mathematics, is one of the main stories in the book. Stillwell has chosen an array of exciting and worthwhile topics and elegantly combines mathematical history with mathematics. He covers the main ideas of Euclid, but with 2000 years of extra insights attached. Presupposing only high school algebra, it can be read by any well prepared student entering university. Moreover, this book will be popular with graduate students and researchers in mathematics due to its attractive and unusual treatment of fundamental topics. A set of well-written exercises at the end of each section allows new ideas to be instantly tested and reinforced.